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CHAPTER I 

INTRODUCTION 

Although the history of algebra dates back almost three thousand years, much of 

modern algebra grew out of a desire to solve many number theoretical questions posed as 

recently as the sixteenth and seventeenth centuries. Many of these questions, including 

Fermat's Last Theorem, fascinated mathematicians such as Kummer and Dedekind, 

prompting them to formalize modern algebra by defining and studying the classic 

algebraic constructs. Dedekind, for example, developed the notion of an ideal to 

generalize the ideal numbers Kummer investigated. Commutative ring theorists in turn 

developed the ideal class group to measure the distance between a Dedekind domain and 

a principal ideal domain. In this thesis, we are particularly interested in studying yet a 

further generalization of the ideal class group-the Picard group. 

To further connect this paper to the work of number theorists, we also consider 

the incidence algebra, which Rota introduced to generalize the Möbius inversion formula. 

We combine the study of these two classical constructs from number theory, and we 

completely investigate the Picard group of an incidence algebra of a finite preordered set 

over a field. In the process, we are able to formulate a structure theorem for the 

automorphism group of such an algebra and to solve a question pertaining to invariance 



under Morita equivalence. With that said, the remainder of this chapter is dedicated to 

making the statements of these problems and the associated terminology specific. 

Throughout this thesis, we assume all rings are unital. We write group and ring 

homomorphisms on the right and module homomorphisms opposite the scalars. Recall 

that a reflexive and transitive binary relation is a preorder. If it is also antisymmetric, 

then it is a partial order. We let AT be a field and P = (V(P),p(P)) be an arbitrary finite 

preordered set with vertex set V = V(P) and relation set p(P). We employ the notation 

(/, j) e p(P) to mean i, j e V and / < j with respect to the ordering on P. 

Letting p(P) = {(/, j)\(i, j),(JJ) e p(P)}, we define an equivalence relation - on 

Vvia i ~ j if and only if (ij) ep(P). Let [i] denote the equivalence class of i for each 

i e V, and let V be a set of class representatives. Set p(P) = [V x V] n p(P). It is easy 

to verify that P = (V ,p(P)) is a poset which we call the underlying poset of P. By 

convention, V(P) = V and p(P) = p(P). 

The incidence algebra I(P) of P over K is the algebra of all functions from the set 

of pairs (i,j) e p(P) into K with addition given pointwise and multiplication given by 

fg(if j)= X /(»»k)s(k, j) • The structure matrix ring M(P) of P over K is the subring 

of the | V | x | V | matrix ring over K such that M e M(P) if and only if MtJ = 0 

provided (i,j) <£ p(P). Since I(P) is ring isomorphic to M(P) as in [21, Proposition 

1.2.4], we henceforth associate S = I(P) with M(P). That is, we represent an element in 

S by the corresponding element in the structure matrix ring. 
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There is ample interest in understanding the structure of Aut(S), the multiplicative 

group of automorphisms of 5, with special attention given to the subgroup of 

automorphisms of S which fix K as viewed inside S, which we denote by AutK(S). See 

[4], [6], [7], [10], [15], [20], and [22]. We therefore state our first problem as follows: 

Problem A. Represent Aut{S) as a semidirect product of several subgroups. 

In [6], Coelho was able to represent AutK(S) as the semidirect product of three 

particular subgroups. In Chapter HI, we extend this representation to one for Aut(S) as a 

semidirect product of four subgroups. 

The outer automorphism group of S is defined to be the factor group 

Out(S) = Aut(S) I Inn(S) where Inn(S) is the normal subgroup of Aut(S) formed by 

the inner automorphisms of 5. The decomposition of Aut(S) arising from Problem A 

and the strong connection it allows us to demonstrate between Out(S) and Out(S), 

where S is the basic ring of S, become the primary tools we use to solve the remainder of 

the problems posed in this paper. 

The Picard group Pic(S) of a ring S is the set of invertible S-bimodule 

isomorphism classes with the group operation being the tensor product, which we denote 

by <g>. The Picard group is of particular interest since it is a special subset of the 

projective right (and left) S-modules, which are instrumental in the study of module 

decomposition. 

For </> G Aut(S), we define 0 S = S as a set and as a right S-module. We define 

left multiplication by elements of S via s * x = (5)* x for xe. S and s e S. By [8], t S is 
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an invertible 5-bimodule with inverse  _x S and therefore represents an element in Pic(S). 

However, not every element of Pic(S) is necessarily of the form L S] for some 

<j) e Aut(S). This leads to the statement of 

Problem B. For [X] e Pic(S), determine the structure of X in terms of 

automorphisms of S and automorphisms of the underlying poset of P. 

which we discuss in Chapter V. Specifically, we give a construction in Definition 5.5 

generalizing the ^S construction. 

The mathematical literature demonstrates interest in knowing which ring 

properties are invariant under Morita equivalence. For example, the property of being 

artinian is a Morita invariant and is possessed by incidence rings. However, the group of 

outer automorphisms of an incidence ring is not an invariant. For example, S =QxQ is 

Morita equivalent to S = M2 (g) x Q since it is the basic ring for S. However, given the 

machinery of Problem A, the reader may verify that Out(S) = 1 $ Z2 = Out(S). This 

motivates the statement of 

Problem C. Determine necessary and sufficient conditions so that Out(S) is 

naturally invariant for the Morita equivalence class of S (relative to the collection 

of incidence AT-algebras). 

We provide the solution and the details of "natural invariance" in Chapter V. 



CHAPTER II 

PRELIMINARIES 

Throughout this chapter, let R and R' be rings. Recall that Pic(R) is the group 

formed by the set of invertible /J-bimodule isomorphism classes under the tensor product. 

Also recall that for (/> e Aut(R), we have the invertible /?-bimodule 07?, where left 

multiplication by elements of/? is defined via r * x = (r/x for x e^ Rand re R. 

The facts and results presented in this chapter will lay the foundation for the work 

in subsequent chapters. Specifically, for an incidence ring S with basic ring eSe, we 

construct a commutative diagram 

Out(S)   >Pic(S) 

I i 
Out(eSe) > Pic(eSe) 

in Theorem 2.10 which we use in Chapters IV and V to explore the connection between 

Out(S) and Out(eSe) and to ultimately solve Problems B and C. 

Definition. We say that RM is a progenerator for the category R-mod if Mis 

a finitely-generated, left Ä-module such that R is isomorphic to a direct summand of 

M(n) as left /«-modules for some integer n. Consequently, M generates R-mod, the 

category of left /«-modules. 



Let M be an (R, R') -bimodule. As in [8], we say R MR> is invertible if R M is a 

progenerator for R-mod and End(RM) = R' as rings. Equivalently, RMR, is 

invertible if there exists an (R',R) -bimodule N and bimodule isomorphisms 

6: M ®R, N -> R and v. N ®R M -» R' making the diagrams 

M®N®M    °®lM   >R®M             N®M®N    T®^   >R'®N 

llM®r                    l»       and            llN®e 4/ 

M®R'     ^ > M N®R     £—>   N 

commute where the ß are the standard multiplication map isomorphisms. 

We now work toward establishing a connection between Aut(R) and Pic(R). 

Lemma 2.1. Let 0 e Aut(R). 

(i) ^R=RR as left /?-modules. 

(ii) dR = R  , as i?-bimodules. 

(iii) lj)R<S>TR=(j)rR as i?-bimodules for all r e Aut(R). 

(iv) The map 0 f-»[0/J] is a group homomorphism from Aut(R) -» Pic(R) with 

kernel 7nn(/?). Consequently, Inn(R) is a normal subgroup of Aut(R), and 0/? = R asR- 

bimodules if and only if 0 e Inn(R). 

Proof. We have the abelian group isomorphism frR-t^R via r \-> (r)*. For r, s 

€/?, (rs)0 = (r)*(j)* = r * (s)*, so <p is a left tf-module isomorphism showing (i). The 

remaining statements are straightforward adaptations of [8, Proposition 55.10 and 

Theorem 55.11], given that we are writing our maps on the right instead of on the left. 



Notation 2.2. Recall that Out(R) = Aut(R) I Inn(R). By the First Isomorphism 

Theorem for groups and Lemma 2.1, there is a monomorphism X: Out(R) -> Pic(R) such 

that Inn(R)(j) h-> [^R]. We can therefore identify Out(R) as a subgroup of Pic(R) via X. 

When R is an incidence ring of a preordered set P over a field K, we use Xp to denote A. 

We observe that for an invertible tf-bimodule X, R = End{RX) as rings via 

rh-> pr where (x)Pr = xr for all x e X. We use this to prove the subsequent lemma 

which states a necessary and sufficient condition for [X] e Pic(R) to be in the image of 

X:Out(R)^Pic(R). 

Lemma 2.3. Xis an invertible /?-bimodule such that either RX=„ R or 

XR = RR if and only if there exists 0 e Aut(R) such that X=^,R as /?-bimodules. 

Proof. We include a proof here even though this is really just [8, Theorem 

55.12]. 

(<=): This holds by Lemma 2.1. 

f 
(=>): We suppose that R X=RR. By the above observation, there is a ring 

isomorphism px:R-> End(RX) defined via r h* p^ where {x)pr = xr for all x e X. 

We also have the ring isomorphism p:R -» End(RR) defined via r i-> pr where 

(j)Pr = sr for all J e R. It is easy to verify that a: End{RR) -» End(RX) where 

(/)   = ¥fF    for / e End(RR) is a ring isomorphism. Notice that R = End(RX). It 
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is clear that for each reR, «P lp?W eEnd(RR). Since R = End(RR), then 

»p-ipXip _ p^ ^or some unjqUe r'e^  §jnce Q _ px
a-lp~l is the composition of ring 

isomorphisms, then 6 e Awf(/?). Furthermore,/= (p* )a p   =Q¥~xp*x¥)p~  implies 

thatp^e =(re)p=¥/-1pr
Xf/. 

f 
To show X = Re as /?-bimodules, we only need to show that fis a right R- 

module homomorphism from X into Rg. However, this holds since for re R and xeX, 

(xrf = (x)p^ = (xj™'1*3?* = (xf'9 = (xfr9 = (xf * r. By Lemma 2.1, 

Xs _j/?. The proof is similar if we have XR=RR. 

Definition. Following [2], a ring R is local if its only idempotents are 0 and 1. A 

set of idempotents in a ring is said to be orthogonal if the idempotents comprising the set 

are pairwise orthogonal. A ring R is called semiperfect if it contains a complete set 

{el,e2,...,en} of orthogonal idempotents such that for each /, eiRei is a local ring. A 

non-zero idempotent in a ring R is primitive if it cannot be written as the sum of two 

non-zero idempotents in R. An i?-module is primitive if it is of the form Re for some 

primitive idempotent e in/?. A set {ex,e2,...,en} c R of primitive, orthogonal 

idempotents is called basic if Rel,Re2,...,Ren is a complete irredundant list of 

representatives of the primitive left ^-modules. An idempotent of a semiperfect ring R is 

basic if it the sum of a basic set of idempotents of R. A ring is a basic ring for R if it is 

isomorphic to eRe for some basic idempotent e in R. 



Remark. Per [2], for a semiperfect ring R we can actually find a complete set of 

primitive, orthogonal idempotents such that for each i, eiRei is local. 

Lemma 2.4. If/? is basic semiperfect, then the group monomorphism 

A: Out(R) -» Pic(R) in Notation 2.2 is an isomorphism. 

Proof. Let {el,...,en} be a complete, basic set of idempotents of R. Then/? 

= Re1®...®Ren and the Ret are pairwise non-isomorphic, indecomposable submodules of 

RR. Let [X]ePic(R). Then RX is aprogenerator for R-mod and R = End(RX). To 

show X is surjective, we need to show there exists <j> e Aut(R) such that +R = X asR- 

bimodules. By [2, Theorem 27.11], RX = Re^^SRe^ for some index sets 

A,,...,\ unique up to cardinality. Since RX is finitely-generated, then Au...,An can 

be viewed as non-negative integers. 

To complete the proof, we show that R X=RR by showing that each 4- = 1 and 

then appeal to Lemma 2.3. Since X is a generator, there is a positive integer k for which 

there is an epimorphism Xk -> R which by projection yields an epimorphism Xk -» Äe,. 

for each /. Since the above decomposition of X is unique, then each Rei is a direct 

summand of X and each A, > 1. We show by contradiction that A, = 1 for each i. 

Without loss of generality, we assume A, > 1. Since R = End{RX), then End(RX) is 

basic semiperfect. Let m = X |41 MuHet {/„..., /m} be a set of idempotents of /? 

defined such that: 

/l>/2'"-'/lAil =el'  •/lA1l+l'---»/lA1l+IA2l =e2'"-'  /lAil+.+l^-it+l'"•'/». = en • 
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Since RX = Rel
(Al)®...@Ren

(An) = ®1L\Rfi.tnen writing our maps on the right (opposite 

the scalars), 

'HomiR^Rfj)    Hom(RfvRf2)    ...    /fom(/^/i,/^/m)^ 

End(RX) = 

JIomtffm.Rfi)   Hom(Rfm,Rf2)   -   Hom{Rfm,Rfm)y 

Let A,- be the standard matrix idempotents for the above matrix ring. Since fx = f2, then 

End(RX)hx = End(RX)h2, which is impossible since End(RX) is basic semiperfect. 

Definition. Two rings R and R' are Morita equivalent if there are functors 

F.R- mod —> R' — mod and G:R'- mod —> R - mod generating an equivalence 

between the categories R - mod and /?' - mod . By [13, Morita II], there exist invertible 

bimodules R> PR and R PR. such that the functors F and G are naturally isomorphic to the 

functors P' ®R - and P" ®R. -, respectively. Furthermore, the functors 

P'®R -<8>R P" and P"®R, -®R, P' yield isomorphisms between Pic(R) mdPic(R') 

via [X] (-> [P' ®R X ®R P"] and [Y] H> [P" ®R, Y®R, P'] for [X] e Pic(R) and 

[Y] e Pic(R'). It is clear that Morita equivalence determines an equivalence relation and 

that isomorphic rings are Morita equivalent. 

Lemma 2.5. Suppose R is semiperfect with complete set of primitive, orthogonal 

m 
idempotents {el,...,en} which has basic subset {fv..., fm}. Let e = £ fi. 

i=l 

(i) R and eRe are Morita equivalent, 

(ii) The ring eRe is basic semiperfect. 
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Proof, (i) This is [2, Proposition 27.14]. 

(ii) This follows from (i) and [2, Corollary 27.8]. 

We are now ready to define the map relating Pic(R) to Pic{eRe) depicted in the 

diagram at the beginning of the chapter. 

Lemma 2.6. IfR is semiperfect with basic idempotent e, then the map 

e(-)e: Pic(R) -> Pic{eRe) defined via [X] i-> [eXe] is a group isomorphism. 

m 

Proof. We have that e = £ ft,, where {/j,..., fm} is a basic subset of some 
i=i 

complete set of primitive, orthogonal idempotents [ex,..., en} c R. 

Clearly, ReR c R. To show that Tte/? = /?, we need only show that the e, e /?e/f 

for then 1Ä e 7?e/?. Since e is basic, then for each et there is an fj such that ite,- = Rfj 

as left /?-modules. By [2, Exercise 7.2], there exist r,r'e R such that g, = e.rfj.r'e,. 

Since f}e = fj, then et = eirfjer'ei e ite#. 

It is now clear that Re ®eRe eR = R as i?-bimodules, and for a ring R' and 

bimodules Ä,yÄ and RZR,, Y®R Re = Ye as (R',eRe) -bimodules and eR®RZ = eZas 

(eRe, /?') -bimodules. 

Since End{eRR) = eRe = End{RRe) and since eRR and Äi?e are clearly 

progenerators for mod -R and R- mod, respectively, then the functor eR <8>R - <S>R Re 

effects a group isomorphism between Pic(R) and Pic(eRe) via 

[X] I-» [e/? ®Ä X ®Ä Äe] = [gXe]. 
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We are now ready to apply these results to the specific case when we have an 

incidence ring of a preordered set over a field. 

Notation 2.7. Recall that we let P = (V = V(P),p(P)) be a finite preordered set 

and P = (V = V(P),p(P)) be the underlying poset of P. Recall that we also make the 

association S = I(P). Letting et e S be the matrix idempotent with 1 in the i,i position 

an O's elsewhere for each i'eV, then {et \i eV} is a complete set of primitive, orthogonal 

idempotents in S. We henceforth make the associations e = £e, and S = eSe. 

Lemma 2.8. For i,je V, Set = Se} if and only if [i]= [/']. 

/ 
Proof. (=»): If Set = Sej for some i,j e V, then / e Hom{Sei,Sej) = etSej and 

/_1 e HomiSej^et) s eySe,.. If [i] * [j], then either (/,;) g p(P) or (y,i)£ p(P). If 

0". 7) &P(P), then e,&?; = 0. Hence, / = 0, which contradicts that it is an isomorphism. 

Since we have a similar contradiction if (j,i) £ p(P), then [/] = [j]. 

(<=): If [i] = [y],then (i,j),(j,i) e p(P), and so el7,e,,. e 5. By transitivity, 

(A:,0 e p(P) if and only if (k,j) e p(P) for each keV. Thus, e^Se,- = 0 if and only if 

ekSej - ° • Hence, S^ and Se • are isomorphic via the map se, t-> se,, = se, ,e, e Se •. 
j *■ l IJ IJ    J J 

Lemma 2.9. 

(i) 5 is semiperfect with basic idempotent e; hence, eSe is the basic ring for S. 

(ii) If P is a poset, 5 is basic semiperfect. 
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Proof, (i) To show S is semiperfect, it suffices to show the e,Se, are local rings; 

however, this is clear since e,Se, = K is a field. By Lemma 2.8, e = £e, is basic. 

(ii) This holds since {et \i e V} is basic by the antisymmetry of P and Lemma 2.8. 

All of the pieces are now in place to construct the diagram mentioned at the 

beginning of the chapter. 

Theorem 2.10. 

(i) The map e(-)e: Pic(S) -> Pic{eSe) defined via [X] h-» [eXe] is a group 

isomorphism. 

(ii) eSe = I(P) and so we make the association S =eSe = I(P). In particular, 

I(P) and I(P) are Morita equivalent. 

(iii) The map Ap:Out(eSe) -> Pic(eSe) as in Notation 2.2 is an isomorphism; 

hence, the diagram 

Out(S)      xr  >Pk(S) 

l*s 4,*-)« 

Out(eSe)    X?  ) Pic(eSe) 

commutes where <f>s = XP[e{-)e]hp~l. Furthermore, XP is an isomorphism if and only 

if <f>s is an isomorphism. 

Proof, (i) This follows from Lemmas 2.9 and 2.6. 
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(ii) For a e I(P), define a* e eSe via a*/,,r; = at.t. for f, ,f;. e V and 

a*f,,fy = 0 otherwise. It is easy to verify that (-)*:/(P) -» e5e via a h-> a* is a ring 

isomorphism. The proof is complete since eSe is Morita equivalent to S by Lemma 2.5. 

(iii) This follows directly from (ii) and Lemmas 2.5 and 2.4. 



CHAPTER III 

A CHARACTERIZATION OF AUT(I(P)) 

Recall that P = (V = V(P),p(P)) is a finite preordered set with underlying poset 

p = (V = V(P),p(P)). Also recall that for i € V, [i] = {j e V\(i,j),(j,i) e p(P)} and 

that V is a set of representatives of these classes. We make the associations S = I(P) and 

S = eSe = I(P) where e = ]T e(. is a basic idempotent for S. 
ieV 

Our goal in this chapter is to characterize Aut(S), the multiplicative group of 

automorphisms of 5. We embed our field K in S in the natural manner, and we let 

AutK{S) denote the subgroup of automorphisms of 5 which fix K. We extend Coelho's 

description of AutK(S) in [6] as the semidirect product of three of its subgroups to a 

characterization of Aut(S) as a four-subgroup semidirect product. This yields a 

representation of Out(S) (and Out(S)) as a semidirect product which we use to explore 

the connection between Out(S) and Out(S) in Chapter IV and to solve Problems B and C 

in Chapter V. 

Definition. Let a e Sv; that is, <ris a permutation on V. We say dis an 

automorphism of P if (ia,f) e p(P) if and only if (i,j) e p(P). Let Aut(P) denote 
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the multiplicative group of automorphisms of P. For a e Aut(P), we define a: S -» S 

by setting (eUj)
a = ea ,a and extending linearly. That is, for (aitj) e S, the {1,7}-entry 

of (ajj)* is a _!    _j. In [6], Coelho points out that a e AutK(S). 

Lemma 3.1. 

(i) The map (-)-.Aut(P) -> Aut(S) is a group monomorphism. 

(ii) For G e Aitf(P), ([i])flr = [i,<T] for each fe V. 

(iii) Let a denote the composition Aut(P) -» Aut(S) —?—> Out(S) where v is 

the canonical projection. Set L = {a e Aut(P)\([j])a = [7] for each; e V}; i.e., L 

consists of those cleaving each class invariant. Then L = Ker(a). 

(iv) If P is a poset, a is injective. 

Proof, (i) This follows directly from the comments in [21, pg. 273]. 

(ii) This is clear since for / e V, 

je[i]e>(i,j),(j,i)ep(P) 

(iii) Choose class representatives {vl,...vt}. 

(c): Let a e L. It suffices to show that a e Inn(S). Since [xa] = [x] for each 

x e V, then [Xer"1 ] = ([*])ff_1 = tf**])*"1 = [x] by (ii). Hence, U(<T) = £ £ «   <x and 
i=l jtefv,] 

*;t 
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u(o ') = X I e    _j are in 5. We show that u(o) and u(p l) are inverse elements. 
j=l;re[v,]   xx 

Notice that u(a) and u(a l) have only one non-zero entry, namely a 1, in each row and 

each column since xa * ya and xa   ±ya    for x * y. For i,j e V, [«(cMc-1)],-; 

= 5XCT)«.* "(or"1)itj = "(0<r . • If i = 7. then iff = ;CT, so that U(CT
_1

) ff 

= u{a~x)        _! = 1. If i * j, then ia * f so that u(a~l) a   = 0. Therefore, 
■a joa Pj 

u(a)u(q~l) = ls. Similarly, u(o~l)u(cr) = ls, and M(<J) is a unit in S with inverse 

M(<7
-1

) . Since for A e S, we have 

MOAMCCT)],.,. = I"(<T"1)i,*[A«(CT)]Jki; 
/fceV 

= [AK(<T)]     , 
'     J 

meV   i       ,m 

= (A)\,-, 

then (Af = u{o~l)Au{a) and (7 e 7nn(5). 

(2): Let cr e #er(a). Then a e Inn(S), and there is a unit U in 5 such that 

Aa =UAU~1 for every A in S. We want to show that a leaves each equivalence class 

invariant. Let X = [v,] for some 1 < i < t, and let ex = £eXJC . Notice that (ex)& 

xeX 
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= Yj(,exx)
a = Xe a a ~e a where Xa = (X)° is an equivalence class. It remains to 

xeX xeX x   x X 

show e a = ex, since then Xa = X. 

For any equivalence class Y and A, B e S, eYABeY = (eYAeY)(eYBeY) = eYAeYBeY. 

To see this, let i, j e Y so that 

[eyAB*y]u = J,[eYA]iJc[BeY]kj 
keV 

= B^],,*^]*,; + lierAljkiBerhj . 
keY keY 

For z £ Y, either (i,z) (and (;,z)) or (z,i) (and (z,y)) g p(P); hence, 

[erAßey],J = X[eKA]a[ßey],J 

keY 

= [eYAeYBeY]ij. 

We now show that ex = e a as follows: 

exa = ex°exaexa Since exff is idemPotent 

= exoUexU-lexa since e^ = (exf = ta^tf"1 

= e'aUe
vaexe

vau~lß
va bY the above observation. 

A A A A 

If ex * eva»tnen e
v<Texe

v<T = ° which yields the impossibility 
A A X 

xa     xa X xa xa      *xo- 
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(iv) If P is aposet with V = {vx,...,vt), then the equivalence classes are the 

singleton sets {vx},..., {v,}. By (iii), a e Ker(a) implies that v° = v,- for each i; thus, cr 

is trivial. 

Set Out(P) = Awf(P) / L. By the First Isomorphism Theorem for groups, there is 

a monomorphism Out(P) -» Out(S) such that Lcr h-> Inn(S)o, and so we identify 

Out(P) as a subgroup of Ow^S) via this monomorphism 

Notation 3.2. Since Coelho's description of AutK(S) requires that V 

= {1,2,..., nP} and since we wish to extend this to a description of Aut(S), then we make 

this stipulation on V throughout the remainder of this paper. We set P(P) = {a e Aut(S) 

\<7 e Aut(P) such that ia < f as integers whenever (i,j) e p(P) and i< j as integers}. 

As in [6], 2>(P) is a subgroup of AM^(5') 

Recall that a group G is said to be the semidirect product of subgroups N and H 

if N is normal in G and iV n H = 1. We use the symbol 0 to denote the semidirect 

product, and we write G = NQ>H. For h e H, h~lnh e N for each neN since AT is 

normal. We can view h e H as a map from iV into iV" via the action nh = h~lnh, and we 

say that H acts on N bv conjugation. 

If n,n' eN and h,h'e H such that nA = n'A', then n'~ln = Ä7T1 eNnH = l. 

Hence, n = n' and h = h'. By induction, we see that we have uniqueness of 

representation for a semidirect product of any number of factors. 
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The next result connects the subgroup L mentioned in Lemma 3.1 with P(P). 

Proposition 3.3. Aut(P) is the semidirect product of L by P = {a e Aut(P) I 

ia < f as integers whenever (i,j) e p(P) and i < j as integers}; in particular, 

P(P) = P = Out(P). 

Proof. We first show Pc\L=\ by contradiction. Assume a e P n L such that 

a* 1. By Lemma 3.1, G leaves each equivalence class invariant, so that (i,ia) e p(P) 

for each i e V. Since a* 1, there exists i e Vsuch that either i < ia or ia < i as integers 

2 
(where the inequality is strict). Since ere P, there exists either a chain i < ia < i°  <... 

2 
or a chain ... < i    <i   <i. This is impossible since V is finite; hence, Pr\L = \. 

To show Aut(P) = L• j0, let er e Attf (P).  Suppose P has m equivalence classes, 

and let V = {xu,xl2,...,xUl,x2<1,x2<2,...,x2Jl% ,...,xml,xm>2,...,xmkm} such that for each 

1 < / < m, the vertices xifl,xi2,...,xik. comprise the i-th equivalence class and 

xi,\ < xt,2 <• • < xijct ^ integers. For each 1 < i < m, let 1 < ix,..., ik. < k; such that 

(xui)° < (xu2)° <•■•< (xuk.)° as integers, and define a map T,- such that xtJ H* XU. 

for each 1 < j < k{ and all other vertices remain fixed. The T, e L since they leave the 

equivalence classes invariant; hence, r = fjr, e L. To show that rcre P, take x, ,, JC,- k 
]<i<m 

such that x(.; < xik as integers; that is 1 < j < k < kt. Then 

so that rcre Pand cr = ltre La-Lxc cLp. 
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Finally, L is normal since it is the kernel of a group homomorphism. 

We now establish the notation necessary to define the third and final subgroup in 

Coelho's decomposition of AutK(S). 

Notation 3.4. Let A(P) denote the graph associated with the relation p\p as 

defined in [6]. Specifically, the vertices of A(P) are the / e V such that either (i,j) or (j, 0 

e p(P)\p(P) for some; e V, and the edges of A(P) are the unordered pairs {i,j} such 

that (i,j) or (j, 0 e p(P)\p(P). Let T{P)m denote a spanning tree of the m-th 

component of A(P); i.e., T(P)m contains every vertex in the component. Let p(P) be the 

subset of p(P) such that (i,j) e p(P) if and only if (i,j) e p(P) and {ij} is an edge in 

the union of all the trees of all the components of A(P). Let J(P) denote the vertices of P 

that are not in the union of the trees, and let ^p{P) = p(P) n [J(P) x J(P)]. 

As in [6], a function g:p(P) -» K* is transitive if (i,j)8(j,k)8 = (i,k)8 for all 

0\ j), (j, k) ep(P). Every transitive function g:p(P)-+ K* gives rise to an 

automorphism g* of S by defining (eij)
g*=(i,j)8eij and extending linearly. Per [6], 

%P) = { g* e Aitf(S) I g:p(P) -» #* is transitive and (i,j)g = 1 for all 

0\ 7) e p(P) u p(P)} forms a subgroup of AutK(S) under composition; that is, 

g* oh* = (gh)* where gh:p(P) -*K* is defined via (i,j)gh = (i,j)8(i,j)h. 

We caution the reader that %P) depends on the choice of trees; different trees 

yield a different %P). 
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Example. Given the strict constraints imposed in the definition of ^(P), one 

might wonder if $(P) is almost always trivial. In [6, Example 2], Coelho constructs an 

example of a preordered set P for which <%P) is nontrivial. As we will see in Theorem 

4.5, 0(P) s £(P), so #(?) is also nontrivial. To see this, note that V(P) = {1,2,4,5} 

and p(P) = {(1,1),(1,4),(1,5),(2,2),(2)4),(2,5),(4,4),(5,5)}, so that V(A(P)) = {1,2,4,5} 

and p(A(?)) = {{1,4},{1,5}, {2,4}, {2,5}}. We let T(P) be a tree for the single component 

of A{P) with edges {{1,5}, {2,4}, {2,5}}. For any a e K * such that a * 1, the transitive 

function g:p{P) -» K* via (1,4)* = a and (i,j)g = 1 otherwise is in ^(P) since 

p(P) = {(1,5),(2,4),(2,5)} and p(P) = 0. Thus, in this case, 0(P) = #(P) = K*. 

Set OutK(S) = AutK(S)/Inn(S). By [6], AutK(S) = (Inn(S)2>0(P))<Z>P(P); 

thus, the subgroups <^P), P(P), and 7nn(5) are pairwise disjoint. As a result, the 

compositions #(P)—^> AutK(S) -> OutK(S) and P(P)—^> AutK(S) -> OutK(S) 

are monic. We shall identify ${P) and P(P) with their images in OutK(S) under these 

compositions. 

As we mentioned at the beginning of the chapter, our description of Aut(S) 

requires one more subgroup. Before giving its definition, we need a suitable description 

of the center of S. 
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Proposition3.5. SupposePhasncomponents Pl,...,Pn. 

(i) S = A!©...©^ where A, is the incidence ring of Pt ovevK. 

(ii) The center C of 5 is isomorphic to K^. 

(iii) AutK(C) = Sn. 

Proof, (i) We represent the matrices of S in "block form". That is, we group the 

vertices based upon their inclusion in the components of P and index the matrices of 5 

beginning with the vertices in V(jFi), followed by those in V(P2), and ending with those 

in V(Pn). The matrices are thus of the form 

[A]   0   ...     0 
0     \    0       i 
;    o ••.   o 
o   -  o [\\ 

It is clear that /jS£ = A, as rings where for 1 < i < n, /, =   £e.. So, S 
JeV(Pt) 

= f\Sfi®---®fnSfn = A\®—®A„. In subsequent discussion, we identify A,- with fiS^, 

and we may write S = A1©...©An. 

(ii) Since et, e S, then for a in C, ae(, = e, ta. However, this only holds if a has 

non-zero entries only on its diagonal. We show that the entries on the diagonal of a 

corresponding to vertices in the same component must have the same value. For ß e S, 

we have ft.,«,,,. = J^ßiJcakJ = (ßa)tJ = (aß)tJ = J,aIJtßkJ = außtJ. So, if 
keV IceV 

(i,;') e p(P), then we must have au = aUi Finally, it is clear that Cft = K where the 

ft are the central idempotents in (i); hence, C = K{n). 
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(iii) Let creAutK(C). Consider the central idempotents ft in(i). Since 

Cfi = K is indecomposable for each 1 < i < n, the ft are primitive in C. We claim the 

fi are precisely the primitive central idempotents of C. Viewing C as K{n), we see that 

any idempotent of C must have either a 0 or 1 in each coordinate. Since the f{ 

correspond to the idempotents with 1 in the i-th coordinate and O's elsewhere, then any 

other idempotent/of C must have a 1 in at least two positions. But, then Cf = Km for 

some m > 2, which is not indecomposable. 

Since any automorphism must take primitive central idempotents to primitive 

central idempotents, there exists T e Sn such that (fi)a = fx. Since a fixes K, 

(aft)   = af T for all a e K. It is easy to verify the map a h-> T is a group 

monomorphism. Finally, let T G Sn. Since C = K(n) is a free ^-module with the ft 

forming a free basis for C, then by [2, Exercise 8.11], there exists a e Aut(Q such that 

(fi)°= f.x f°r each »• Hence, the map is an isomorphism. 

We are now ready to define the final subgroup necessary for our representation of 

Aut(S) as a semidirect product. 

Notation 3.6. As in Proposition 3.5, 5 = Aj©...©^ where n is the number of 

components of P. If a e Aut(K), we can define ä e Aut(Ak) entry wise; that is, 

(aij)a = (<*(") where (atj) e Ak. We then have a group monomorphism 

Aut(K) -> Aut(Ak), which yields a group monomorphism Yl"Aut(K) -» Aut(S) via 
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(a,-) i-> (a,) where a,- e Auf (4). Denote the image of this map by Aut(K)n. Since 

automorphisms of S take the center C to itself, the restriction map sends Aut(K)n to a 

subgroup of Aut(Q which we also denote by Aut(K)n. 

Proposition 3.7. Aut(Q = Awf(/0"0AutK(Q. 

Proof. Let er e Attf(AT)" n AutK(Q . Viewing C as K(n) as in Proposition 3.5, 

then k e Kcorresponds to the element (k,k,...,Jc) inside C. Since a e Aut(K)n, then 

cr = (cr,) where the cr, are automorphisms on the coordinates. Since a e AutK{C), then 

(k,k,...,k) = (k,k,...,k)a ={kai,ka2,...,kan). It follows that the at are the identity 

automorphism on K, and a is the identity on C. 

We now show Aut(Q = Aut(K)n ■ AutK(C). Let a e Aut(Q. As in 

Proposition 3.5, there exists reS„ such that (/))<T = /T. Define c' e AM^(C) via 

(1Laifif = X «i/r • We claim that Ö = o(o'Yl e Aitf(£)". It suffices to show 0 
\<i<Ji iSiin        ' 

fixes each ft since then 6 leaves each Cft invariant. But, ff = fi
a(a')    = /.T

(ff)    = ft. 

Thus, a = do' e Aut(K)n ■ AutK(C). 

We finally show that Aut{K)n is normal in Aut(Q. Let ß = (/?,) e AM^ä")" and 

a e Awftf (O. Since AutK(C) = Sn, we may identify cr with the associated permutation; 

that is, we may assume {xft )
a = xfa for xe K. For (*.) e C, 
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i 

= ((* _,ft))<T"1 

i 

= (*/V), 

and so oßcT1 = (ß,a) e Anf(A0". 

We are almost ready to state the main theorem of this chapter which presents 

Aut(S) as a semidirect product of the four previously described subgroups. Its proof will 

follow from the following two lemmas. 

Lemma 3.8. Aut(S) = Aut{K)n ■ AutK(S) and Aut(K)n n AutK(S) = 1. 

Proof. To show that Aut(K)" n AutK(S) = 1, let a e Aut(K)n n AutK(S). We 

know ke K corresponds to the scalar matrix kle S where / is the identity. But, 

kl = (kll,...,kln) where the Ij are the identity elements of the Aj. Since a e Aut (K)n, 

then <T = (<r,) where the at are automorphisms defined entrywise on the A,-. Since 

aeAutK(S),then (kll,kl2,...,kln) = kl = (kl)a =((kl1)^,(kl2)
a\...,(kln)

an). ft 

follows that a is the identity on S. 

Let a e Aut(S). Then a\c e Aut(Q, and by Proposition 3.7, we may write 

a\c = ßy where ß e Aw f(#)n c Awf(Q and y e AutK(Q. We extend ß to an 

automorphism of S in the obvious manner, and we denote this automorphism also by ß. 

IfxetfcCcS, then 



27 

= X 

which shows ß~xa e AutK(S). Thus, a e Aut(K)n ■ AutK(S) 

Lemma3.9. SupposePhasncomponents Px,P2,...,Pn. 

(i) Aut(K)" normalizes both Inn(S) and ^(P). 

(ii) P(P) normalizes Aut(K)n, and if n= 1, then Awr(i^)" normalizes ?>(P). 

Proof. Let ß = (/?,) e A«W. 

(i) Since Inn(S) is a normal subgroup of Aut(S), Aut(K)n normalizes Inn(S). 

To show Aut(K)n normalizes £(P), we let g* e 0(P) = {g* e Aut(S) I g:p(P) -* K* 

is transitive and (i, j)g = 1 for all (i,;') e p(P) u p(P)}. Recall that g* is defined by 

setting (eu)8* = (ij)8 etj and extending linearly. Since p(P) = p(P1)u...up(P„),fhen 

8 = (8k) where gk:p(Pk) -» K * is a transitive function for P*. Since the 

ßk G Aut(K), we have ßk~x:K*^> K*, and the compositions gkßk~1:p(Pk) ->K* are 

transitive. If (i,;) ep(P), then (/,y) e p(P*) for exactly one it, and we define 

(ij)h = (i,j)gkßk~l . Clearly, Ä:p(P) -> ÜT* is transitive. Since (l)"*"1 = 1, then 

(i,j)h = 1 for all (i,j) e p(P) up(P) and fc* e £(P). Let et,.y denote a matrix basis 

element belonging to Ak. If * € K, then 
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= (xßHiJ)8kekij)
ß~ 

= x(ijy^-1ekij 

sothat^g*J_1=/i*e^(P). 

(ii) Let a e P(P). We know c sends components of P to components of P. For 

a component Pk, we let Pa denote the component (Pk)
a. Let a = (ak)eS where the 

ak are in Ak, and write a* = (akiJ). Then oßo--1 = (ß a)e Aut(K)n since 

=«4f)) 
Cßo) = a   k    . 

Forn = 1, let ß e A«f(#) and csp(P). Since for fo= A", (fe.. )# = kße „ „ 

= (ke^P", then by extension, aß = ßa. Consequently, ßaß~l = <7 e P(P). 
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Theorem 3.10. Aut(S) = [(/nn(S)0£(P))0 Aut(K)n]<Z>P(P). 

Proof. By [6], AutK(S) = (Inn(S)2>0(P))0p(P). By Lemma 3.8, 

Aut(K)n n AutK(S) = 1 and Aut(S) = Aut(K)" ■ AutK(S). Since Aut(K)n normalizes 

Inn(S)0#(P) by Lemma 3.9, then 

Aut(S) = Aut(K)n -(Inn(S)e>$(P))-P(P) 

= [(Inn(S)00(P))0 Aut(K)n]- P(P). 

Since P(P) normalizes Aut(K)n by Lemma 3.9, and since P(P) normalizes 

Inn(S)<2>#(P), then P(P) normalizes (Inn(S)2>#(P))2> Aut(K)n. Thus, 

Aut(S) = [{Inn{S)Q>#{P))Q> Aut(K)n]®P(P) . 

Corollary 3.11. If P is connected, then Aut(S) = AutK(S)<Z> Aut(K). 

Proof. By Lemma 3.8, Aut(S) = Aut(K) ■ AutK(S) and Aut(K) n AutK(S) = 1. 

By Lemma 3.9, Aut(K) normalizes AutK(S) = (Inn(S)<2>#(P))<2>P(P) which means 

Aut(S) = AutK(S)2> Aut(K). 

Corollary 3.12. Out(S) = [£( P)0 Aut(K)n]0 P(P); if P is connected, then 

Out (S) = OutK(S)<2> Aut(K). 

Proof. By Lemma 3.9, Aut(K)n normalizes #(P), so that #(P)<2> Aut(K)n   is 

defined. Define 7c:Out(S)-*P(P) via Inn(S)g*ßö^>ö. To show TT is well-defined, 

suppose Inn(S)g*ßö = Inn(S)h*Sr. Then g*ßa = ah*Sr for some a e 7hn(S). By the 



30 

uniqueness of representation of the semidirect product, then g* = h*, ß = Ö, and 6 = f. 

It is easy to see that n is a group epimorphism. 

Consider the sequence #(P)e> Aut(K)n    v >Out(S)    n )?(P) -> 1 where vis 

the canonical map. By 

Theorem 3.10, Aut(S) contains the disjoint subgroups Inn(S) and 

0{P)2> Aut(K)n; hence, vis monic. Clearly, Im(v) c Kerijt). Suppose Inn(S)g*ß& 

e Kerin). Then a = 1, so that Inn(S)g*ßö = Inn(S)g*ß = (g* ß)v. The sequence 

splits since the monomorphism P(P)——> AutK(S) -> OutK(S) is abackmap for 

n:Out(S)->P{P). 

If n = 1, then by Corollary 3.11, Aut(S) = AutK{S)Q> Aut(K) . We define 

K: Out(S) -» Aut(K) by Inn{S)g * 6J3 h-> J3. As above, the sequence 

1 —» OutK(S) ——>Out(S) ——> Awf(ÄT) —> 1 is split exact with the monomorphism 

Aut(K)    c  ) A«f(5) -> 0H?(S) a backmap for n: Out(S) -> Awf (Ä}. 



CHAPTER IV 

THE CONNECTION BETWEEN OUT(I(P)) AND OUT(I(P)) 

Recall that P = (V = V(P\p(P)) is a finite preordered set with underlying poset 

P = (V= V(P),p(P)). Also recall that for i e V, [/] = {j e V\(i, j),(;,/) e p(P)} and 

that V is a set of representatives of these classes. We make the associations S = I(P) and 

S = eSe = /(P) where e = ]T e, is a basic idempotent for S. 
ieV 

Our goal in the next chapter is to solve Problems B and C. Working to that end, 

we explore the connection between Out(S) and Out(eSe). We have the maps 

XP:Out(S) -» Pic(S) and Xp:Out(eSe) -> Pic{eSe) as defined in Notation 2.2. Recall 

that by Theorem 2.10, Xp and e(-)e: Pic(S) -» Pic(eSe) are group isomorphisms so that 

the diagram 

Out(S)  - xP * Pic(S) 

l+s le(-)e 

Out(eSe)- Xp 
-» Pic(eSe) 

commutes, where <ps =XP[e(-)e]Xp 1. 

The philosophy of this paper is that with a sufficient understanding of Out(eSe) 

and the isomorphisms Xp and e(-)e, a reasonable description of the elements of Pic(S) 

is within grasp as we will see in Chapter V. However, the description is particularly nice 
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if Xp is an isomorphism or, equivalently, if <j)s is an isomorphism. Since we would like 

to use knowledge about the simpler group Out(eSe) to glean information about the 

structure of Pic(S), then the goal of this chapter is to take a large step in that direction by 

discovering necessary and sufficient conditions under which <ps is an isomorphism. 

We begin with the connection between ^(P) and $(P). Specifically, we address 

the connection between p(P) and p(P) and the connection between p( P) and p(P). 

We start with the following lemma. 

Lemma 4.1. 

(i)p(P) = {(i,i)lieVr} = p(P)n[VfxV]. 

(ii) A(P) = A(P)n[VxV]. Moreover, there is abijection between the set of 

components of A(P) and the set of components of A(P) via C h-> Cn A(P). 

Proof, (i) This is clear since P is a poset and therefore antisymmetric. 

(ii) We first show that V(A(?)) = V(A(P) n [V x V]). Note that the proofs of 

the inclusions below are similar if we use (j,i) instead of (/, j). 

(c): If i e V(A(P)), then there exists j eV such that (i, j) e p(P)\ p(P), so 

that (i, j) € p(P) \p(P) and i e V{A{P) n[V xV]). 

(2): If i e V(A(P) n [V x V]), then there exists j e V(A(P)) such that 

(i, j) ep(P)\p(P). Let m e V such that m e [j]. Then (i',m) e p(P). However, 

(i',m) g p(P), for otherwise, / = m e [j], which contradicts that (i, y) g p(P). Thus, 

0",m) e p(P)\p(F) and i 6 V(4(P)). 
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The edges also agree since for i,j eV, 

{i,j} e p(A(P)) <=> (i,j) ep(P)\p(P) (or (j,i) e p(P)\p(P)) 

<=> (1,7) €p(P)\p(P) (or (7,1) e p(P)\p(P)) 

&{i,j}ep(A(P)n\VxV]). 

Clearly, each component of A(P) is contained in some component of A(P). 

Suppose C\ and Ci are distinct components of A(P) contained in some component C of 

A(P). Take i'e V(CX) c V and je V(C2) c V. Since C is connected, there exist edges 

{i,x1},{x1,x2},...,{XkJ} m P(A(P)). Let x[ be the unique element in V r\[xt] for 

each 1 < i < k. It is then clear that [i,x[},{x{,x'2},..., {x'k,j} are edges in 

p(A(P) n \V x V]) = p(4(P)) which implies that^e V(Ci). This contradicts that Cx and 

C2 are distinct, thereby showing the correspondence. 

Recall that the definitions of ^(P) and $(P) depend on the choice of spanning 

trees for the components of P and P, respectively. Since we wish to connect #(P) and 

#(P), we make a connection between spanning trees for components of A(P) and 

spanning trees for components of A(P). 

Definition. Let C be a component of A(P) with associated component C of 

A(P). Let T(P) be a spanning tree for C. If T(P) is a spanning tree for a subgraph G of 

C containing C such that T(P) = J(P) n ^i(P) and each edge in T(P) is incident on at 

least one vertex in V, we say that T(P) extends T(P) and T(P) Ufts to T(P). 
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Lemma 4.2. If T(P) is a spanning tree for a component C of <4(P), then there 

exists a spanning tree T(P) for the corresponding component C of 4(P) that extends 

T(P) as in the above definition. 

Proof. We show that we can extend T(P) to such a spanning tree for any 

subgraph of C containing C by inducting on the number of vertices in such a subgraph. 

Suppose we have a subgraph G of C such that k is the only vertex in V(G) \ V(C). 

Let j e V such that j e [k]. Since k e V(Q , then j e V(Q as well. Thus, j e V(C) 

and there exists an m e V such that {j,m} is in T(P). So, either (y,m) (or (m,j)) is in 

p(P)\p(P) = p(P)\(p(i>)n[fxf]). Thus, a,m) (or (m, j)) e p(P)\p(P). Since 

; e[fc], then (k,m) (or (m,A:)) e p(P)\p(P) and {£,m} e p(^i(P)). The graph 

T(P)v{k,m} formed by adding the vertex k and the edge {k,m} to T(P) contains no 

circuits since {k,m} connects a vertex in V to a vertex not in V. Hence, J(P) u {k,m} 

is a spanning tree for G that extends T(P). 

We now suppose that we can extend T(P) to a spanning tree for any subgraph of 

C containing n more vertices than C such that each edge in the tree is incident on at least 

one vertex of V , and we further suppose that we have a subgraph G of C such that 

V(G) \V(C) = {v1,...,v„,vn+1}. By hypothesis, we can extend T(P) to an appropriate 

spanning tree for the graph formed by deleting from G the vertex vn+1 and any edges 

incident on it. This tree in turn can be extended appropriately to include v^ as 

described in the induction basis paragraph. 
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Remark. To connect #(P) and $(P), we use Lemma 4.2 to extend trees for 

A(P) to trees for A(P). Consequently, our choice of trees for A(P) depends on the 

trees chosen for A(P). This, in turn, determines #(P). We impose this assumption 

throughout the rest of this paper. 

Lemma 4.3. If the trees for the components of A{P) extend the trees for the 

components of A(P), then 

(i)p(P) = p(P)np(P) 

(ii) J(P) = J(P)nV 

(iii) p(P) = p(P)np(P) 

Proof, (i) Suppose (i,j)ep(P). Then (i,j)ep(P) and {i,j} is an edge in 

some tree T(P) for a component of A(P). Since {/, j} is also an edge in the tree T(P) 

which extends T(P), then (i, j) &:p(P)r\ p(P). 

Conversely, suppose (i, j) G p(P) n p{P). Then, {/, j) is an edge in some tree 

T(P) for a component of A(P). Since this tree extends a tree T(P) in A(P) and since 

i,jeV, then {i,j} must be an edge in T(P). So, (i,j)ep(P). 

(ii) Suppose i e J(P). Then i is not a vertex in any tree of A(P). Since i e V , 

then it is also not a vertex in any tree of A(P). Thus, i e 7(P) nV . 

Conversely, suppose i e 7(P) n V . Then i is not in any tree of A(P). Since the 

trees of A(P) contain those of A(P), then i is not in any tree of A(P) and i e J(P). 
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(iii) By Lemma 4.1 and (ii), 

(i, j) e p(P) = p~(?) n [J(P) x J(P)] 

&(iJ)e(p(P)n[VxV])n[(J(P)nV)x(J(P)nV)] 

«(i, j) e (p(P)n[J(P) x J(P)])n [V x V] 

<=>(i,j)ep(P)np(P). 

Before stating the theorem establishing the connection between #(P) and ^(P), 

we need the following lemma which we also use in many of the remaining proofs 

presented in this paper. 

Lemma 4.4. If a e Aut(S) such that ea = e, then e(aS)e =a]eSg (eSe) as eSe- 

bimodules. 

Proof. We make e(aS)e into an eSe-bimodule with right multiplication defined 

by ete*ese = (ete)(ese) = e(tes)e and left multiplication ese *ete = (ese)a (ete) = e(saet)e . 

Since this is simply the action of S on a S restricted to eSe, e(aS)e is a well-defined eSe- 

bimodule. 

We show that e(aS)e =0]gSg (eSe) as eSe-bimodules by showing the identity map 

te(aS)e -^a\eSe (eSe) is an eSe-bimodule isomorphism. Let ete e e(aS)e, eseeeSe, and 

let • denote the left and right eSe-multiplication in a^   (eSe). Then ((ete) * (ese))1 

= (ete)(ese) = (ete)1 • (ese). Also, ((ese) * (ete))1 = (ese)0 (ete) = (ese) • (ete)1. So, 
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1 is an eSe-bimodule monomorphism. Since both e(aS)e and CT,    (eSe) equal eSe as 

sets, 1 is an isomorphism. 

Theorem 4.5. 

(i) If g:p(P) -» AT* is a transitive function, then glp(/5) :p(P) -» K* is a 

transitive function. 

(ii) If g* e $(P), then g\Se = (g\p(~p))' G £(P). 

(iii) The map (-)\eSe :#(P) -> $(P) via g* h-> g*leÄ, is a group isomorphism 

making the diagram 

0(P)-^>   Aut(S)—^   Out(S)    Xp  >   Pic(S) 

i(-^ J,#s 4,«(-)« (46) 

£(P) —£-» Aut(eSe) —^-> Out(eSe)    X?   ) Pic(eSe) 

commute where the v are the canonical projections. 

Proof, (i) This follows since p(P) c p(P). 

(ii) Suppose g* E £(P). Then g is transitive and (i,j)8 = 1 for all (i,j) 

e p(P) u p(P). Since p(P) c p(P) and p(P) c p(P) by Lemma 4.3, then 

p(P)up(P)Qp(P)up(P). Thus, (fc.m)^^ =1 for all (jfe.m) ep(P)up(P) and 
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Since (i,i)* = (U)8(i,i)8 inside K*, then (i,i)g = 1 for all fe V. Thus, e8* = e 

and (eSe)8* = e8*S8*e8* = eS8*e. Since S8* = S, then (eSe)8* = eSe and 

g*\eSe e Awf(eSe) = Aut(I(P)). 

If eAe =     £    ai,;e«v *s ^ element of eSe, then 
(iJ)ep(P) 

(ij)ep(^) 

(iJ)ep(P) 

(/J)ep(P) 

= (eAe)**'e5e. 

(iii) By (ii), (-)\eSe is well-defined. Since g*\eSe e Aut(eSe), then (gh)*\eSe 

= (8 ° h )\eSe = (g*\eSe )(h*\eSe ) , and (-)\eSe is a group homomorphism. To show that it 

is epic, we let h* e #(P) and construct g* e $(P) such that g*\eSe = h* as follows: 

For i,y e V, there exist i'J' e V such that /' e [i] and 7" e [7]. We define 

g:p(P) -» K* via (i,/)* = (i',/)*. Since (i,j)ep(P) implies (1',/) e p(P), g is well- 

defined. Notice that (i,j)g = (i,j)h for all (i,j) e p(P) and (i,j)8 = 1 if [/] = [/]. 

We start by showing g is transitive. Let (i, /), (/,/) e p{P), and let i', /, /' e V 

such that V e [i], f e [7], and /' e [/]. By the transitivity of h, (i,j)8 = (i'J'f 

= (i',l')h(l'J')h=(U)8(lJ)g. 
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To show g* e #(P), we must show (i,j)8 = 1 for all (i,j) e p(P) up(P). If 

(ij) e p(P), then [i] = [/] and (i,y)* = 1. If (/,;) e p(P), then (i,j) e p(P) and {/,;} 

is an edge in a tree 7(P) for some component of A(P). By assumption, T(P) extends the 

tree T(P) for the associated component of A(P) as described in Lemma 4.2. By 

definition, (i,j)8 = (i',j')h where *',/ eV./'e [i], and / e [;]. Since, by 

construction, each edge in T{P) is incident on at least one vertex in V, we must consider 

the following cases: 

Case 1: If i,j e V , then {i,j} is an edge in T(P), (i,j) e p(P), and (ij)8 

= (i,j)h = l. 

Case 2: Suppose i £ V and j eV . The proof is similar if we suppose i e V and 

j £ V. By the construction of T(P), we know {i,j} was added to T(P) to "graft in" the 

vertex i and {i'J} is an edge in T(P). Since (i,y) e p(P), then (/',;') 6 p(P) so that 

(i'J)e^(P). Hence, (/,./)* = (i',./)* = 1. 

Since (i,j)8 = (i,j)h for all (ij) e p(P), then clearly g*\eSe = h* and (-)lrfe is 

surjective. 

By [6, Theorem C], Aut(S) contains the disjoint subgroups ${P) and Inn(S); hence, 

the top row of diagram (4.6) is monic. Since the bottom row is similarly monic and since 

e(-)e is monic, then we will have shown (-)\eSe is injective once we show the large 

rectangle commutes. However, this will also show the diagram commutes since the right 

square commutes by definition. 
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The image inside Pic(S) of g* e #(P) under the composition of the top row is 

[g*S]. After applying e(-)e, we have the element [e(g*S)e] in Pic(eSe). By part (ii), 

e8 =e. Hence, e(gi,S)e=g^Se (eSe) as eSe-bimodules by Lemma 4.4. The diagram 

commutes since [( *,    ^eSe)] is the image of g*\eSe in Pic(eSe) under the composition of 

the bottom row. 

We now turn our attention to connecting P(P) and P(P). 

Definition. Define (-): Aut(P) -» Aut(P) via a h-> a where, for i e V , i5 is 

the unique element in V n [i'0"]. We show that of e A«r(P) below. 

Lemma 4.7. Let a e Au/(P). 

(i) a e A«f(P). 

(ii) (-) is a group homomorphism with kernel L. Recall that L is the set 

{a € A«f(P)l([y])cr = [;] for each./ e V}; i.e., L consists of those a leaving each class 

invariant. 

Proof, (i) We must show a e S9 and (i5,f) e p(P) whenever (i,j) ep(P). 

We first show a is a bijection of V. 

Suppose ij e V such that f = f. Then [iff] = [f],so that [i] = [/]. Since 

i, ;'eV, which is a set of equivalence class representatives, then i =j and a is injective. 
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Let jeV . Since a e Aut(P), there exists ke V such that ka = j. Let i e V such that 

i e [k]. Then [i°] = [ka] = [j], i9 = j, and ö is a bijection. 

For ij e V , is e [ia] implies that (id,ia),(ia,i°) e p(P), and / e [f] 

implies that U9*Ja)>UaJ9) e P(^) • Thus> ty transitivity, 

(i,j)ep(P)<&(i,j)ep(P) 

<*(ia,f)ep(P) 

*>(id,/)ep(P) 

<*(is,/)ep(?). 

(ii) Let <T,T € Awr(P). Then i(m) = m where m e V n [J'
OT

] . On the other hand, 

f = 7 where j eV n [ia], which implies that i3* =f=k where it e V n [/]. Since 

[fc] = [/] = [iOT] = [m] and k,meV , then fc = m. So, I
(OT)

 = m = k = im, and («) is a 

group homomorphism. 

Finally, we have 

er € Ker{-) o a = 1 in Awf (P) 

o Ier = i for all i e V 

<»[/*] = [/] for alHef 

<=>[iff] = [i]foraUieV 

<=><7SL. 
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Theorem 4.8. Let the representatives comprising V be chosen such that i G V 

implies i<jas integers for all ye [i]. 

A 

(i) (-) induces a monomorphism (-)\eSe:P(P) -» P(P) via <T h* <7le5e = cr. 

(ii) The group homomorphism (f>s is given by 

(Inn(S)g*ß&)*s = /nn(5)(g^a)U = /«*(£)(**(* )(&& )fr 

for g* e £(P), J3 e AHf(üT)", and CT G P(P). 

Proof, (i) Suppose cep(P). Because of the way we chose the elements in V, 

o\$ e Aut(P) so that <j\p = ö. Hence, a fixes e and a\eSe e Aut(eSe). For an element 

eAe =     X    aijfy ofeSe, 
(iJ)ep(P) 

A 

(^)?=     X    «/,;(^,.ä)=     I    aUj{e.aa) = {eAef, 
(i,j)ep(P) J (iJ)ep(P) '   J 

A 

so that d\eSe = a. 

A 

Since ax\eSe = ax\eSe = o\eSe x\eSe for T G P(P), we have a group homomorphism. 

A A 

If a = x, then cf = T since (-): Aut(P) ->• Aut(S) is monic. Since a,x G p(P), they 

are completely determined by a and f, respectively. Thus, cr = x and <7 = x. 

(ii) Since P also has n components, Auf(K)n embeds inside Aut(S). We 

abuse notation slightly and identify Aut(K)n as residing in both Aut(S) and Aut(5). 

Since ß e Aut(K)n fixes e, it leaves eSe invariant. In particular, 

ß\eSe G Aut(eSe). Since ß merely acts on the entries of the matrices of 5 and eSe, then 
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ß\eSe e Aut(K)n as contained in Aut(eSe). It is easy to verify that the restriction map 

induces a group isomorphism between Aut{K)n c S and Aut(K)n c Aut(eSe). 

By Corollary 3.12, Out(S) = [$(P)2> Aut(K)n]0p(P). Furthermore, arbitrary 

elements in Out(S) are uniquely of the form Inn(S)g*ßa where g* e $(P), 

ß e Aut(K)n, and ceP(P). By (i), ea =e. Since e^ = e and since e8* = e by 

Theorem 4.5, then e( *a^S)e=  ,*d|     (eSe) as eS^-bimodules by Lemma 4.4. Since 

g\Se,ß\eSeeAut(eSe), then (g*#7)U = (As* XÄs, X^U) • By(i), ö\eSe = ö. 

Thus, 

(//m(S)g*#T)*5 = (Inn(S)g*ßöy 

= ([e(g,-ßaS)e}y 

= Inn(eSeXg*ßd)\eSe 

A 

= /nn(5)(A,J08le5e)(ör). 

We are about to accomplish the stated goal for this chapter; that is, we will list 

necessary and sufficient conditions under which Qs is an isomorphism. To do so, we 

need one more definition. 

Definition. Following Bolla [5], we say S has the Aut-Pic property if 

XP: Out(S) —» Pic(S) is an isomorphism. 

\Ap 
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Corollary 4.9. The following statements are equivalent, 

(i) The group monomorphism <t>s:Out(S) -» Out(S) is an isomorphism, 

(ii) The group monomorphism (-)\eSe :P(P) -» P(P) is an isomorphism, 

(iii) The group homomorphism (-): Aut(P) -> Aut(P) is surjective. 

(iv) S has the Aut-Pic property. 

Proof. (i)<=>(ii) Consider the following diagram where the rows are as in 

Corollary 3.12. 

1 -» £(P)0 Aut(K)n -> Out(S) -> P(P) -> 1 

H-VeSe 1*5 H-VeSe 

1 -> #(P)2> Aut(K)n -> Out(S) -* P(P) -* 1 

For g%gx*ßX*${P)VAut{K)\ (g%rPl)\eSe = (g*faeSe(gi%Xse &UX 

8 ßese 6 Aut(eSe). Hence, the leftmost vertical map (-)\eSe is a group homomorphism. 

Since (-)\eSe :$(P) -» ^(P) is an isomorphism by Theorem 4.5, we have an 

isomorphism. 

By Theorem 4.8, both the left and right squares clearly commute. Hence, the 

entire diagram commutes. 

If <j>s is surjective, then (-)\eSe :P{P) -» p(p) is surjective by the commutativity 

of the right square. Surjectivity of (-)\eSe :p{P) -> p(p) implies surjectivity of <t>s since 

the leftmost (-)\eSe is an isomorphism. 
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(ii)=>(iii) Take a e Aut(P). Then a e P(P) so that there exists & e P(P) such 

A 

that a = a\eSe = a,. Since (-): Aut(P) -» Aut(S) is monic, then cr = a. 

(iii)=>(ii) Take a e P(P). Then a e Aut(P) so that there exists ß e Aw?(P) 

such that ß = a . By Proposition 3.3, ß = ra for some r e L and some <J e Aut(P) 

A 

such that «7 e P(P). Since L = Ker{~), then a = ß = TÖ = ö and <7le5e = a = a. 

(i)o(iv) This is trivial. 



CHAPTERV 

THE SOLUTION TO PROBLEMS B AND C 

Recall that P = (V = V(P),p(P)) is a finite preordered set with underlying poset 

P = (Vr = V(P),p(P)). Recall that for ie V, [i] = {j eV\(i,j),(j,i)e p(P)}. We 

suppose V = {vly...vt} is the set of minimal representatives of these classes (as integers) 

since we wish to apply Theorem 4.8. Also recall that we make the associations S - I(P) 

and S = eSe = I(P) where e = Xe; is a basic idempotent for S. 

Since our first goal is to explicitly describe the elements of Pic(S), we revisit the 

following commutative diagram from Theorem 2.10 where 05 = XP[e(-)e]kp~x. 

Out(S)      XP  >Pic(S) 

Out(eSe)    XP   ) Pic(eSe) 

By Lemma 2.3, if X is an invertible S-bimodule such that either s X =s S or 

XS=SS, then there exists q> eAut(S) such that Xs^S as 5-bimodules. If this is the case 

for each invertible S-bimodule, then A P is an isomorphism, which makes (j)s an 

isomorphism. Since we are assuming that we have a sufficient understanding of 

Out(eSe), then, in this case, a nice description of Pic(S) is easily within grasp as we see 

next. 
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Suppose XP and (f>s are isomorphisms. Then if [X] e Pic(S), there exists 

6 e Aut(S) such that X=eS. However, 6 can be chosen as a lifting of an automorphism 

of S . We know from Corollary 3.12 that each element in Out(S) is uniquely of the 

form Inn(S)g*ßa for some g* e ^(P), ß e Aut(K)n, and a e P(P). Since <j)s is 

epic, then by Theorem 4.8, Inn(S)g*ßö = {Inn(S)g*xßxa{fs where g\ e 0(P) such 

that g*leSe = g*,ßle Aut(K)n c Awf(S) such that ßx\eSe = ß, and &l e ?5(P) such that 

A -i 
O'iU«= (^i) = & • Since 0c-1AP is an isomorphism, [ *_ . S] = (Inn(S)g*ßö)'l's    p 

si ßm 

e Pic(S). Hence, if we understand the structure of the elements of Out(S), then since 

we know how to form the image under (pf1 of these elements, we can construct a 

representative of each element in P/c(5). 

However, not all elements in Pic(S) are necessarily of the form ^S for some (p 

e Aut(S). In fact, XP is an isomorphism if and only if (-): Aut(P) -» Aut(P) is 

surjective by Corollary 4.9. Hence, describing the elements of Pic(S) is interesting when 

(-) is not surjective. However, since Xp(e(-)e)~l is an isomorphism, there is still hope 

to characterize Pic(S) based upon the structure of elements in Out(S). 

Definition 5.1. For o € Aut(P), we set 

P(<7) = {(i,j)K(i')a,J) 6 p(P) where V e V such that i e [/']}. 
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We define Z((T) to be the subset of the | V \ x | V | matrix ring over K such that z e Z(o~) 

if and only if z(J = 0 provided (/, ;*) g p(cr). We call Z(a) the 5-bimodule induced bv 

p(d) or the incidence 5-bimodule induced bv a. We justify this name below. 

Lemma 5.2. Let c e Aut(P). 

(i) Z(a) is an 5-bimodule. 

[(v,.)ff_1] (ii) Z(d)5 = (enS)(bi)®..B(eVtS)w where for 1 < / < t, b( = 

Proof, (i) To show Z(a) is a left 5-module we need only show sz G Z(<r) for all 

z e Z(<7) and se S. Let z e Z(cr). By Unearity, we may consider only the ekl in 5 such 

that (k,l) e p(P). To show eklz e Z(tr), it suffices to show that for i,j e V, 

(ekiZ)ij * 0 implies (i,j) e p(tr). However, (eklz)itJ = 0 unless i = k. So, we may 

suppose i = k. Then, (e^z),.,. = X(«t/)*^«j = («*/)w*/j = */,; ■ If */j * 0, then 
meV 

(/, T) e p(a) and ((/')*,;) e p(P) where /'eV such that / e [/']. Since eu=ekleS, 

then (/,/) e p(P), so that ((i')ff ,(/')*) e p(P) where i' e V such that i e [*']. By 

transitivity, ((/')",./) e p(P). Hence, (/,;) e p{o), and Z(<r) is a left 5-module. Z(«j) 

is similarly a right 5-module. Since 5 and Z(cr) are subsets of Mn(K) where n = |V(P)|, 

the multiplication is associative and Z(o~) is an 5-bimodule. 

(ii) For i e [(v,)ff   ], et (Z(<7)) = e       _x 5 = ev. 5 by the definition of Z(tr). 
(v;)ff   ff J 

So, there are fc, = [(v,)ff   ] copies of ev. 5 in Z(cr). 
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We next show that Z(a) e Pic(S) and e{Z{o))e =a (eSe) as e&?-bimodules. 

This will allow us to identify (Inn(S)g*ßc)Xp(e(~)e)~ e Pic(S) as [ .. Z(cx)] where 
sißi 

g*x e $(P) extends g* and ßl e Aut(K)n c Aut(S) is the obvious extension of ß. 

Lemma 5.3. Let <J e Aut(P). 

(i) Z(cr) e Pic(S). 

(ii) e(Z(<r))e =ö (eSe) as eSe-bimodules. 

Proof. Recall that by Lemma 5.2, Z(<y)s =(enS)ibl)@...@(eVtS)w where for 

l<i<t,bt = 
,-i 

[(v,y ] 

(i) Z(cr)5 is a finite sum of finitely-generated, projective right S-modules; 

therefore, Z(<r)s is a finitely-generated, projective right 5-module. Since each b,, > 1, 

Z(cr)5 is easily seen to be a generator for mod-S. 

Since P/c(5) = {[ s Zs ]l Zs is a progenerator for mod-S and End(Zs) = S as 

rings}, it remains to show End(Z(a)s) = S. We again rely on our basic set of 

idempotents {en,...,eV(}. Since Z(<7)5 s(evl5)(i>l)e...©(eV/5)(^) as right 5-modules, 

then writing our maps on the left (opposite the scalars), End(Z(a)s) = (ht •) where 

hiJ=Hom((eVjSf
J\(ev.S)(bi)). But, HomCCe,^)^0,^^)^0) is isomorphic to the 

bt x bj matrix ring over Hom(ev. S, ev. S), which in turn is isomorphic to ev. Sev. as 

abehangroups. Consequently, Hom((ev.sf
J\(ev.S)(bi)) = Mb,>(b.(ev.SeVj),aiid 
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End(Z(a)s) = 

Throughout the rest of the proof, we associate End(Z(o)s) with the above 

matrix ring where the ring multiplication is standard matrix multiplication. Since 

O" e Aut(P), then by the definition of the &,, |v| = bx+...+bt. 

We will be done if we can show that End(Z(cr)s) is a structure matrix ring for P 

over K since it will then be isomorphic to I{P) = S. We have that ev.Sev. = K or 

ev. Sev  = 0 for each i, j e V. To show we have a structure matrix ring, we label the 

verticesiny v1
1,v1

2,...,v[n',V2,...,v^V2',...,v,1,...,v|v'' such that for each 1 < / < f, v}=v, 

and for each 1 < k < |[v, ]|, v* e [v, ]. Since a~l e Aut(P), it induces a permutation on 

V = {v1,...,vt} which can be viewed as a permutation on {1,..., t}. We therefore identify 

-l 
v _j with (v,)      for each/. We index the rows and columns of End(Z(o)s) with the 

vertices in the following order: v1   i.v2,....,/•_, .v1 ^,...,vb2,,...,v1 _, ,...,vb' , . 
\a       \a \a       2a 2a ta f 

To complete the proof that End(Z(cr)s) is a structure matrix ring for P over K, it 

suffices to show that if a e End(Z(a)s) and a k      ,      * 0, then (v* _, V _,) e p(P) 
v   _. y    . .a l     ,er r 

.a      ^ ■      i 

Since ak      .      is a non-zero entry in Mhxb (e Se  ), then (v,. ,v,) e p(P). This 
P    f 

implies that (v _x, v   _t) e p(P) which in turn implies that (v* _ltv' _t)e p(P). 
i°        f ta .a 
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(ii) For k e V , ek (Z(<7)) = e a S as right S-modules by the definition of Z(cr). 

Thus, for (a,-,) = X aueki G e(Z(o))e.w« can define (a,,)' = £ a* ,e      ed (eSe). 
k,leV k,leV     '   k   ' 

We define the map (-)':e(Z(G))e->a(eSe) via (a, y) h-» (a,,;)'. We clearly have an 

additive group isomorphism since a e Aut(P). We examine its action on the elements 

of the form aekt where a e K and k,leV to show it is a bimodule homomorphism. Let 

s e eSe so that s ■ aek t = ^T sikaet t and 

(s-aekl)'=2,sikae 
ieV 

-   X   s -1  ae, / by substituting iCT   fori 

= X,y -l aei/ since (Tisabijectionon V 
ieV Ier    ,* 

= 5>ff). ,<!««*/ 
ieV 

= (^)(aV/) 

= A • (ae CT ) where • is the left eSe- 
k   I 

multiplication in ^(eSe) 

= s»(aekiy. 

Since aekl ■ s = ^asueki, then (aekl ■ s)' = J.as^e    . = (ae     )s = (aekl)'s. 
jeV jeV K   J *   ' 
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Lemma 5.4. Let 5 be a ring, 6 e Aut(S), and X be an invertible S-bimodule. Then 

BS®X=eX as S-bimodules. 

Proof. The map eS <8> X->eX via t <8> x h* tx is clearly an S-bimodule 

isomorphism. 

Definition 5.5. Let Inn(S)(p e Out(S). By Theorem 3.10, q> = ag*ßa for some 

a e Inn(S), g* e £(P), ß e Aut(K)n, and a e ?>(P). As in Chapter IV, there is 

g* e £(P) such that g*\eSe = g* and ßl e Aut(K)n c Awf(S) such that ßx\eSe = ß. We 

define Z(<p) = *    Z(cr) where Z{a) is as in Definition 5.1. If Inn(S)ag*ßo 

= Inn(S)yh*&i, there exists a' e Inn(S) such that cc'ag*ßö = )&*5£. By uniqueness of 

factorization of the semidirect product, we have g* =h*, ß = ö, and a = T , which 

shows Z(<p) is well-defined. 

Notice that by Lemma 5.4, Lemma 4.4, and Lemma 5.3, we have [eZ(<p)e] 

= [e(g*~ß Z(a))e] = [e(^ S)e] ® [eZ(<r)e] = [ , (eSe)] <g> fe (e&>)] = [„ (eSe)]. Also 

observe that since e(-)e is a group isomorphism, [X] = [Y] in Pic(S) if and only if 

[eXe] = [eYe] in Pic(S). Our structure theorem for elements of Pic(S) appears next. 
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Theorem 5.6. Let [X] e Pic(S). 

(i) X = Z(q>) for some Inn(S)(p e Out(S). 

(ii) If X =fi 5 for some $ e Aw?(S), then eS==X = Z(ß\eSe) for some 

6 e Aut(S). 

(iii) The arithmetic in Pic(S) is defined by [Z(<j?)] $ [Z(^)] = [Z(<px)]; that is, 

Z((p)®Z(x) = Z((px). 

Proof, (i) Since [<?Xe] e Pic(S), there exists (p e Awf(S) such that [eXe] 

= (Inn(S)<p) p = [9(eSe)] = [eZ(q>)e], which completes the proof by the above 

observations. 

(ii) Suppose X=^S for some £ e Aut(S). By Theorem 3.10, f = ag*j8<7 for 

some a e 7nn(5), g* e #(P), J3 e Aut(K)n, and a e £>(P). Letting 0 = g*ß&, then 

[X] = [55] = (/nn(S)£)A/> = (7nn(S)0)A/> = [e5]. Since A,(c(-)c) = tf^, then, 

[eXe] = [e(eS)e] 

= (Inn(S)B)Xpie(-)e) 

= {Inn{S)9)^p 

= (Inn(S)e\eSe )
Xp by Theorem 4.8 

= [*.&<«&)] 

= [«Z(0U)e] 

so that X = Z(0lrfe) as S-bimodules by the observations preceding this theorem. 
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(iii) This is clear since 

[e(Z(q>) ® Z(X))e] = [eZ(<p)e] ® [eZ(X)e] 

= [n(eSe)] 

= [eZ((px)e]. 

This completes the solution of Problem B. We now pursue the solution to 

Problem C which we now restate. 

Problem C. Determine necessary and sufficient conditions so that Out(S) is 

naturally invariant for the Morita equivalence class of S (relative to the collection 

of incidence ^-algebras). 

Let P denote the set of finite preordered sets. We define an equivalence relation 

~ on P via P'« P" if and only if P' = P" where P' and P" are the underlying posets 

of P' and P", respectively. For each P'ep, let [/>'] be the equivalence class of P'. 

Lemma 5.7. Let Px, P2 e P; let Sx = Ift) and S2 = I(P2); and let 5, and S2 be 

the basic rings for 5j and S2, respectively. The following are equivalent: 

(i) m = [p2] 

(ii) Si = ^2 

(iii) Sx and S2 are Morita equivalent. 
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Proof. Throughout this proof, we let eti and fkl denote the standard matrix 

basis elements for i,jeVl and fc,/eV2. We let et denote eu and fk denote fklc. By 

Lemma 2.9, e= Y,et and / = X/* are basic idempotents for Sj and 52, respectively. 
ieVi teV2 

Hence, we may assume that Sx = eSxe and S2 = /S^/ . 

_ c 
(i)=»(ii) Suppose [PJ = [P2], so that Pl s P2 for some <r. Thus, / = X/o- , and 

the map     X    ai yeiy h*     X    ai ;/o- <r is easily seen to be a ring isomorphism 

between 5^ and S2. 

(ii)=>(i) This is [22, Theorem 1]. 

(ii)<=>(iii) This is [2, Proposition 27.14]. 

Since Morita equivalence determines an equivalence relation on the collection of 

incidence algebras over K, we determine necessary and sufficient conditions on P so that 

the equivalence class of 5 has the property that Out(S) is a natural invariant. 

Specifically, suppose S and S' are Morita equivalent via the functors 

-®sQ's.:Mod-S-*Mod-S' and S,QS®-:S - Mod -» 5' - Mod. Wesaythat 

Out(S) and Out(S') are naturally isomorphic if the functor 

s< Qs <S> -<8>s Q's,: Pic(S) -> Pic(S') restricts to a group isomorphism 

Q ® - <g> Q'\0ut{S): Out(S) -> 0«f(£') where we identify 0«f (S) with its image in 

Pic(S) under XP. That is, Out(S) is naturally isomorphic to Out(S') if and only if the 

vertical maps in the following commutative diagram 
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Out(S)      Xp  >Pic(S) 

Out(S')     Xp'   ) Pic{S') 

are isomorphisms. Note that this definition depends on our choice of functors. 

Let [5] denote the Morita equivalence class of S. We say Out(S) is a natural 

invariant for [S] if Out(S) andOut(S') are naturally isomorphic for all 

S' = I(P')e[S]. 

Recall that we say S has the Aut-Pic property if XP: Out(S) -» Pic(S) is an 

isomorphism. 

Lemma 5.8. The following statements are equivalent, 

(i) (j)s is an isomorphism. 

(ii) (-):Aut(P) -» Aut(P) is surjective. 

(iii) S has the Aut-Pic property, 

(iv)  Out(S) and Out(S) are naturally isomorphic. 

Proof. (i)<=>(ii)<=>(iii) This is Corollary 4.9. 

(i)=>(iv) This is clear since the isomorphism e(-)e: Pic(S) -» Pic(eSe) in the 

commutative diagram 

Out(S)      Xp  >Pic(S) 

Out(eSe)    XP   > Pic(eSe) 

is really the functor eS ® - <8> Se as in Lemma 2.6 and since <j>s = XP[e(-)e]Xp~l. 
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(iv)=»(iii) Since Out(S) and Out(S) are naturally isomorphic, then Xp is an 

isomorphism if and only if Xp is as well. But, Xp is an isomorphism by Theorem 2.10. 

We close this paper with our solution to Problem C. 

Theorem 5.9. The following statements are equivalent, 

(i) Out(S) is a natural invariant for [S]. 

(ii) Aut(P) = \. 

(iii) Every element in [5] has the Aut-Pic property. 

Proof. We first note that Lemma 5.7 permits us to assume that P is the 

underlying poset of P' for any S' = I(P')e [S] by relabeling vertices if necessary. 

(i)=»(ii) For 5' = Z(P') e [5], we know that 5' e [S], and so Out(S) and 

Out(S') are naturally isomorphic as are Out(S) and Out(S'). Since the composition of 

functors is again a functor, then Out(S') and Out(S') are naturally isomorphic. Thus, 

by Lemma 5.8, (-): Aut(P') -> Aut(P) is surjective for every S" € [5]. 

By contradiction, assume there exists 1 * a e Aut(P). Then there exist x,y e V 

such that x * y and xa = y. We show there is a preordered set P' e [P] for which <ris 

not in the image of (-): Aut(P') -> Aut(P). Let z be a symbol not in V, let 

V = V u {z}, and let p(P') be the transitive closure of p(P) u {(z,z),(z,x),(x,z)}. 

Since P is reflexive, so is P'.  P' is preordered since it is transitive by definition. Since 

[x] = {x,z} and since for i e V such that i g [x] we have [i] = {/}, then P is the 
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underlying poset of P'. Since |[JC]| = 2*1 = |[y]|, there is no 0 e Aut(P') such that 

0 = a, contradicting the surjectivity of (-): Aut(P') -> Aut(P). Thus, Aut(P) = 1. 

(ii)=>(iii) If Aut(P) = 1, then for any P' e [P], (=): Aut(P') -> Aut(P) is 

surjective. By Lemma 5.8, then each 5' = I(P') e [5] has the Aut-Pic property. 

(iii)=»(i) If Xp,:Out(S') -» Pic(S') is an isomorphism for all 5' = I(P') e [5], 

then Out(S) is clearly a natural invariant for [S]. 

Example. Let P be the preordered set such that V(P) = {vl5 v2, v3} and p(P) 

= {(vi,v1),(v1,v2),(v1,V3),(v2,v1),(v2,v2),(v2,V3),(v3,v3)}. Since P is such that 

V(P) = {v1,v3) and p(P) = {(v1,v1),(v1,v3),(v3,v3)}, then Aut(P) is clearly trivial. 

Consequently, the incidence algebra 

5 = 
K   K   K 
K   K   K 

^0    0    K) 

for the preordered set P has the Aut-Pic property and Out(S) is a natural invariant for the 

Morita equivalence class [5]. 

On the other hand, the incidence algebra 

5 = 
K K    0\ 
K K    0 
0 0    K, 

does not have the Aut-Pic property as shown in [17]. This holds since Aut(P) = Z2. 
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